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1. Introduction
Sensors are devices to receive physical or chemical signals

and to convert them into electrical signals. Physical signals
are carried by waves such as electromagnetic, optical, and
acoustic ones. Sensing technology for physical signals has
been well-understood and has already been established. On
the other hand, sensing technology for chemical signals,
which are carried by chemical substances, is not matured.

It is thought that chemical substances are moved by
molecular diffusion. However, diffusion velocities of gas
molecules are too slow to transport chemical signals under
many conditions. The transport of chemical substances onto
chemical sensors is actually governed by fluid dynamics.
Fluid dynamics offers two aspects such as a signal in spatial
domain and one in time domain. A signal in spatial domain
is tightly coupled with a plume, a flowing trail of a chemical
substance.

Although the electromagnetic and acoustic waves mainly
propagate straight and their behaviors are easily predicted,
it is difficult to predict the behavior of the plume. Thus, it is
helpful to see the plume dynamics so that people can
understand the plume behavior in spatial domain. Then, the
gas distribution can be measured using a homogeneous sensor
array. The two types of sensor arrays such as sparse and
packed sensor arrays are available. The sparse sensor array
can show the global behavior of the plume, whereas the
packed one reveals the local detailed behavior of the plume.

Although the measurement of gas distribution is the typical
method to reveal the chemical-signal behavior in spatial
domain, one of the recent topics is the plume generated in a
virtual environment, where people perceive sensory stimuli
even if they do not stay in the actual environment. In virtual
reality, people can perceive an object with smell. The
direction to an odor source, the feeling of approaching or
going away from it, might be realized even if the actual smell
source is not in front of people; it is difficult for a chemical
sensor to follow the true dynamic concentration change of
the chemical substance.

Generally, temporal behavior of a chemical sensor has not
been well-studied in comparison with steady-state response.
However, the temporal signal sometimes has information of
chemical substance. Thus, the technique to know the sensor
dynamics such as time constant is required. In some cases,
time constant must be obtained even if the concentration
profile is irregular and is not known. In some cases, the peaks
of the chemical signal over time provide information of
chemical substance.

The temporal data from preconcentrator is also useful to
obtain information on the chemical substance. In addition
to raising the sensitivity, the preconcentrator with variable
temperature can be used to enhance the pattern separation
among odor samples.

The sensing in both spatial and time domains is compli-
cated. Although there have been many works in a single
domain, a limited number of works have been addressed to
combining both domains. The straightforward method to
understand the combination of both domains is to observe
change in spatial distribution with time. Another approach
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is to see the correlation of signal features in time domain
with several locations. The frequency analysis of the signals
also provides us with useful information about an odor-source
location.

This paper covers dynamic behavior of a chemical sensor
both in spatial and temporal domains. First, the spatial
domains such as plume behavior and method of gas-
distribution measurement are described. Moreover, presenta-
tion of an odor source in a virtual environment is explained.

Another part is temporal-response behavior of a gas sensor.
The sensor dynamics model and the analysis method are
described. Then, the analysis in the frequency domain and
temporal data from a preconcentrator with variable temper-

ature are explained. The final part is the sensing in both
spatial and time domains. Observation and analysis tech-
niques for dynamic behavior in the liquid phase are
described.

2. Spatial Domain
We focused on the chemical sensor signals in spatial

domain. First, the plume behavior and its observation method
using an optical tracer are described. Then, the methods of
the gas-distribution measurements using the packed sensor
array for obtaining the direction to the gas source, the sparse
sensor array for obtaining the global information, and the
optical method for obtaining the information remotely are
explained. Moreover, the virtual environment where people
can perceive spatial information of odor is introduced in this
section.

2.1. Plume Behavior and Analysis Method
Gas molecules are carried by air flow and distributed by

turbulence. The transport of chemical substances can be
visualized by a tracer such as smoke. Smoke from a chimney
moves in a downwind direction, and the smoke density is
dispersed and made thin by turbulence. The chemical
substances emanating from the chimney are moving in the
same manner as the smoke because the molecular diffusion
velocities are smaller than the wind velocity.

In environmental chemistry, air or water is analyzed at
sites and in a laboratory. The pollutant is carried by a plume
in air or water flow, and its concentration fluctuates because
of the turbulence. The typical shape of the plume is illustrated
in Figure 1. The plume spreads gradually from an odor source
along the downwind direction. Thus, the concentration
gradually decreases according to the distance from the odor
source along the wind direction. However, the concentration
gradient is steep across the wind direction. It is difficult to
determine the direction to the odor source using only the
concentration gradient because the concentration gradient
along the wind direction is small and often within the noise
level.1 Note that the plume shape in Figure 1 is the averaged
one over time. Since its actual shape is highly fluctuated
due to the turbulence, the noise level is high when we
measure the concentration gradient along the wind direction.

The plume behavior is governed by the fluid dynamics,
which is solved using the Navier-Stokes equation. Although
the numerical approach is often used to obtain the gas-
concentration distribution, it consumes a long time and plenty
of computational resources. Thus, a number of models for
plume were proposed. The simple mathematical model of
the time-averaged plume shape is available and can be
expressed as the solution of the Fickian turbulent diffusion
equation when the time-averaged wind speed is constant and
the wind turbulence is isotropic and homogeneous.2 The
instantaneous plume is very thin. The time-averaged plume
shape is wider because the fluctuated plume is integrated
over time, as is shown in Figure 2. Semiempirical Gaussian
plume models assume a Gaussian distribution of mean
concentration in the plane perpendicular to the plume center
line.3 The growth of the plume width and the height are
determined by the parameters called dispersion coefficients.
The values of those constants for large-scale outdoor plumes
under various atmospheric stability conditions were obtained
from a number of experiments.4 Although the Gaussian
plume models are widely used for assessing the distribution
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of gaseous pollutants, they lack an important feature of real
plumes, i.e., meanderings. Puff models assume that a plume
is composed of a series of puffs released from the source
over time. A Gaussian concentration distribution is generally
assumed in each puff, but now the position of each puff is
free to move according to the local wind direction. A variety
of plume models are also proposed and used to describe other
features of real plumes, e.g., rise of a buoyant plume and
chemical reaction in plumes,5 but providing a detailed
description of each model is beyond the scope of this review.

2.2. Plume Observation Method
Study of the dynamic behavior of gas flow is laborious

work because air turbulence is complicated even if the fluid-
dynamics analysis is performed on a supercomputer. Visu-
alization of dynamic gas distribution using a tracer is a more
realistic way to understand the dynamic behavior of the
plume. A variety of simulations for localizing an odor source
can be performed if the real-time image of the gas flow is
obtained through visualization.

An optical tracer can be used to visualize the plume. The
tracer is a visible light particle that behaves in the same
manner as that of the fluid. When the tracer is emitted from
the source together with the odor, we can know the odor
distribution when we visually observe the tracer distribution.

In the gas phase, titanium tetrachloride and dry ice are
used. However, they are toxic or dangerous when sufficient
smoke required for the charge-coupled device (CCD) camera
is used. Another candidate is oil mist, often generated by a
smoke machine. It is typically used for entertainment in TV
show, theater, concert, etc. Since plenty of smoke is required
to obtain the clear image using a video camera, the smoke
machine is appropriate from that point of view. However,
the oil is deposited over the place close to the smoke machine
after the experiment.

The white smoke of joss sticks can be used as a tracer.6

Smoke particles from burning joss sticks are so small that
the fall velocity is much smaller than typical wind velocity.
The diameter of a joss stick particle is∼1 µm, and it is easy
to track the behavior of the gas molecule under the
environment of typical wind velocity. It does not track the
gas molecule under the environment without wind.

The advantage of joss stick (incense) is that it works as
both tracer and gas molecule. When we observe the plume
behavior together with gas sensor response, only the single
source is required. Although joss stick is good for visualizing
plume, hollow microfiber polymer particles are sometimes
used.7 Since the polymer particle does not produce the signal
by itself, a gas sensor does not respond to it. Thus, it can be
mixed with any vapor.

Next, the visualization system is described. The image of
the 2D optical tracer distribution corresponding to the 2D
gas distribution at the light sheet is captured by a video
camera. Since it is difficult to obtain a real-time 3D image,
the light sheet is illuminated to obtain the two-dimensional
image, as is illustrated in Figure 3. Smoke is spouted from
the nozzle in a wind tunnel, and the height of the light sheet
is adjusted so that most of the smoke can be visualized. The
image of the light scattered by smoke particles is captured
by the video camera. That image is recorded by a VCR
(video cassette recorder) and is transferred to a computer.
Although there are many products of video cameras, the
video camera without AGC (auto gain control) was selected
because the light intensity was proportional to the gas
concentration when AGC was off. We can currently obtain
the real-time image in a digital format using a DVC (digital
video camera), although the system in Figure 3 is a little
old.

The light sheet was generated by the strong illumination
through the slit (60 mm in width, 2 mm in height). Although
the xenon lamp (500 W) was previously used as the light
source, most of light energy was discarded. A combination
of a semiconductor laser with cylindrical lens or high-power

Figure 1. Typical plume shape.

Figure 2. Plume fluctuation.

Figure 3. Plume observation method. Reprinted with permission
from ref 6. Copyright 1998 Elsevier Science.
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light-emitting diode (LED) array is a good candidate to
realize bright light sheet.

An example of instantaneous smoke image visualizing gas
concentration is shown in Figure 4. This is the image just
above the semiconductor gas sensor in a wind tunnel. The
smoke of joss stick emitted into the wind tunnel was carried
by the wind toward the exhaust, and the aerial smoke trail
was formed in the downwind direction. Since the shape of
this trail was disordered because of the wind turbulence, the
instantaneous gas concentration at the sensor place changed
rapidly. The temporal behavior of the sensor will be
discussed in section 3.1.

2.3. Gas-Distribution Measurement
Gas distribution can be measured using many sensors.

There are two types of gas-distribution measurement systems.
One is a sensor array packed into a small region, and the
other is an array of sensor nodes located away from each
other. We discuss both types of sensor arrays for gas-
distribution measurements.

2.3.1. Measurement of Spatial Gas-Distribution Change
by a Large Sensor Array

The initial approach to measure the spatial gas distribution
was performed by Yamasaki and Hiranaka.8,9 They made
the sensor array composed of the same tin oxide gas sensors
as is illustrated in Figure 5. 8× 8 sensors were spatially
placed, and the distance between the two was 20 cm. The
outputs of the sensors were digitally processed to form
images of the spatial gas distribution on a computer screen.
The image of the scene was taken by a video camera, and
these two images were overlaid and displayed on a screen
for easily understanding the gas field. The gas-distribution
image was formed by linear or bilinear interpolation.

The vapor from the liquid source placed at the center of
the sensor array is visualized as is shown in parts a-c of
Figure 6. Figure 6a shows the overlaid image of ethanol

vapor. The gas distribution is expressed using grayscale, and
the white cloud indicates the position of the vapor source.
Figure 6b shows the ethyl ether diffusing in the vertical
direction. Figure 6c shows the distribution of odor from a
human body. The odor seemed to come from his socks. It
was found that the spatial gas distribution could be easily
grasped because of the overlaid image from the video camera.

2.3.2. Gas-Distribution Measurement by Packed Sensor
Array

2.3.2.1. Strategy.The first type of gas sensor array is a
two-dimensionally packed sensor array as is illustrated in
Figure 7. This sensor array is used to measure local gas
distribution. The temporal change of local gas distribution
provides the information of the direction toward the gas
source.

Figure 4. Instantaneous smoke image visualizing gas concentration.
Reprinted with permission from ref 1. Copyright 1999 American
Chemical Society.

Figure 5. Large sensor array and visualization system. Reprinted
with permission from ref 9. Copyright 1992 Elsevier Science.

Figure 6. Visualization result using a large sensor array: (a)
overlaid image of ethanol vapor, (b) overlaid image of ethyl ether
vapor, and (c) odor from a human body. Reprinted with permission
from ref 9. Copyright 1992 Elsevier Science.
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The strategy to search for the odor source using a gas
sensor together with wind direction sensor is often used.10,11

Upon the basis of that strategy, a robotic system can trace
the plume in the upwind direction. However, the capability
of this system is limited by the low sensitivity of the
anemometric sensors used for obtaining the wind direction.
The typical wind velocity in an ordinary room, a few cm/s,
is not detectable by the sensors on the system. The capability
of searching for the gas/odor source can be improved if the
direction toward the source is obtained not using the
anemometric sensor.

One of the methods to obtain the direction toward the odor
source is to use the image flow of the visualized gas cloud.
When we use a two-dimensional homogeneous gas sensor
array, the gas-concentration distribution over the sensor array
is visualized as a grayscale image. The structure of the plume
in a turbulent wind field looks like a gas cloud composed of
many fragments, as is shown in Figure 7. Then, the gas flow
direction is obtained from the movement of the visualized
gas cloud. This method is effective under the environment
of low wind speed. Moreover, redundant information from
the sensor array may make the system more reliable under
the environment with large fluctuation due to the air
turbulence. Although the instantaneous and local gas flow
is not always the same as the global one, the approach of
the sensor array enhances the robustness of the flow direction
estimation by obtaining the averaged direction from the
redundant information.

2.3.2.2. Study of Response-Speed Influence by Simula-
tion. The requirement for gas sensors to realize a gas flow
imaging system is both sensitivity and response speed. The
recovery speed from the response is also important. The first
trial was to make the semiconductor gas sensor array.12 5 ×
5 gas sensors were placed within the area (55 mm× 55
mm). However, the gas flow observed using the sensor array
was not so clear, and the brightness of the whole image
changed because of the slow recovery speed. The influence
of the sensor speed can be understood when the simula-
tion is performed. The gas concentration at each sensor
location is obtained using the plume-observation technique
in Figure 3.

Smoke of joss sticks was introduced into the wind tunnel
as a tracer to simulate a gas field, and the video data captured
by a CCD camera were transferred to the computer. Then,
an array of virtual semiconductor gas sensors was then
assumed to be placed on the visualized gas distribution in
the wind tunnel. Then, the transfer function from gas
concentration to a sensor response was applied at each point
in the array. As a result, an image from a virtual gas sensor
array was obtained.13

The transfer function consists of two terms with dif-
ferent time constants as described later in section 3.2. The
two time constants change in response and recovery phases.
The obtained time constants were 0.33 and 0.15 s in the
response phase and 15.12 and 0.1 s in the recovery phase
when the semiconductor gas sensor (TGS800, Figaro) was
used.

Examples of images obtained from a 10× 10 virtual
sensor array are shown in Figure 8 parts c and d with the
original smoke images captured by a CCD camera in Figure
8 parts a and b. The gas flow direction can be obtained by
comparing the successive images. Although the convention
effect might influence the plume, it was not clearly observed
in these figures.

2.3.2.3. Method of Estimating Gas-Flow Direction.
Here, the method of estimating the gas-flow direction using
a 2D packed sensor array is described. The gas flow vector
v ) (Vx, Vy)T is obtained by using the optical flow constraint
equation expressed as

wherec is gas concentration. The flow velocity is estimated
by applying the least-squares method to the discrete form
of eq 1.

When an array is composed ofN sensors, the following
equations are valid assuming thatu andV are constant within
the array.

where∂c/∂x|i and∂c/∂y|i are the concentration gradients along
x andy at sensori.

Figure 7. 2D packed sensor array.

Figure 8. Example of gas flow images. Reprinted with permission
from ref 13. Copyright 2000 Elsevier Science.
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WhenX andy are defined as

eq 2 can be expressed as

Then, the estimatedv̂ can be obtained using the least-squares
method.14

∂c/∂x|i and ∂c/∂y|i are approximated using the difference
between two sensor responses. It was found from the
simulation that the direction of the gas flow was correctly
obtained when the time constant of response recovery was
less than the array size divided by the wind velocity.13

The important factor to obtain the clear image of the gas
flow is the temporal resolution since it determines the
maximum flow velocity that the system can follow. Although
the response time of the semiconductor gas sensor is
sufficiently short (<1 s), slow recovery (>30 s) was a serious
problem. Thus, QCM (quartz crystal microbalance) gas
sensors15-19 were employed in the next version of the array.20

Their faster recovery enabled the visualization of the gas
flow up to 5 cm/s.

The temporal resolution of the system is determined not
only by the recovery time of the sensors but also by the
sampling rate of the sensor responses. The responses of QCM
sensors are given in the form of frequency shifts. A
multichannel reciprocal counter21 is implemented in the
system to achieve higher sampling rates of the sensor
responses than the conventional frequency counter.22 The
sampling rate here was 8 samples/s, whereas it was 1
sample/s in the conventional frequency counter, i.e., binary
modulus counter.

2.3.2.4. Experiment.The aim of the experiment here is
to evaluate the capability of estimating gas-flow direction
by a packed sensor array and to investigate the possibility
of searching for an odor source by that array. The photo of
sensor array and multichannel frequency countercircuit is
shown in Figure 9. Twenty-one QCM gas sensors coated
with sensing film (phosphatidylcholine) were mounted on
the top board. In order to make a compact array, SMD
(surface-mounted device)-type miniaturized AT-cut quartz
resonators (27.8 MHz) were employed. Each sensor spans
4mm × 8 mm including an internally installed oscillator,
and the distance between the sensors is 1.27 cm. On the
bottom board, an FPGA (field-programmable gate array) chip
was mounted. The 21-channel frequency shift measurement
circuit was implemented into the FPGA.

The sensor responses along the wind direction are shown
in Figure 10. The sensor array was placed 20 cm downstream
from the source of triethylamine in the wind tunnel. Sensor
1 was at the upwind edge followed by successive sensors.
The frequency shift of each sensor is normalized by the
maximum value during the measurement. Since the timing
for the sensors to reach their maximum values agrees with

the sequence along the wind direction, the direction of the
gas flow can be obtained. It should be noted that the
conventional frequency counter with 1 sample/s cannot
capture the difference in timing between sensors 1 and 5
because that difference is at most 1 s.

The sequence of visualized image in the wind tunnel is
shown in Figure 11. The white pixel means that the sensor
at that place has a large response, whereas the dark one has
a small response. Four corners of the image are eliminated
because no sensor is placed at those places. This figure
reveals that the gas flows from left to right.

Figure 12 shows a histogram of the angular deviation of
the estimated flow from the actual mean direction of the
wind. The gas-flow direction can be estimated according to
eq 5. The estimation was performed for 100 s. The deviation
of the estimated directions in the range between-67° and
-22°, one between-22.5° and 22.5°, and one between 22.5°
and 67.5° are classified into-45°, 0°, and 45°, respectively.
74% of the estimated directions in Figure 12 are within the
deviation of 67.5°. Although it may seem to be a large
deviation, it is reasonable considering that the instantaneous
wind direction itself was highly fluctuating. The deviation
in Figure 12 is tolerable for plume tracking since the direction
to track is repeatedly measured to approach the source.

Once the gas flow direction is obtained, the system can
track it down to the source. An experiment was performed
in the laboratory room to show the system’s capability in
source localization. A plastic bottle with a small hole on its

Figure 9. Photo of QCM gas sensor array and frequency counter
circuit.

Figure 10. Response curves of 5 QCM sensors in a sensor array
in a wind tunnel. Reprinted with permission from ref 22. Copyright
2002 Elsevier Science.
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side was prepared and the triethylamine vapor was leaked
from that hole, as is shown in Figure 13.

The gas flowed from left to right at locations a and b.
Then, the sensor array was placed at location c. Since the
gas flow from left to right was observed at location c, the
sensor array was moved to location d. The upper part of the

image was dark, and the gas flowed from lower left to upper
right. Thus, the gas leak position was localized. The plume-
tracking technique based on single-point measurement cannot
determine the source location until the field is thoroughly
investigated for a long time.23

The gas-flow imaging system enables the plume tracking
even when the wind speed is too low to be detected using
an anemometric sensor. This system is applicable to most
of the situation where the wind speed is<30 cm/s. Thus, it
can be used in ordinal domestic or industrial buildings.

2.3.3. Gas-Distribution Measurement by Sparse Sensor
Array

2.3.3.1. Gas-Distribution Measurement for Monitoring
Air Pollution. The packed two-dimensional sensor array is
used to raise the estimation accuracy of the direction to the
gas source within a short time. However, the sensor nodes
are sparsely placed in a huge area when we monitor gas
distribution in space. In this section, the measurement by a
sparse sensor array is described.

In most of the cases, the gas distribution is measured to
monitor air pollution such as NO2, SPM, Ox, SO2, and CO.
Those are measured periodically by government stations, and
the data are available from the web sites in almost real
time24,25 in Japan. However, the gas analyzer used in the
station is very expensive, and the number of the stations is
limited. Thus, the distance between the stations is long. The
stations can be densely placed if cheap and reliable sensors
are available.

Maruo and co-workers measured NO2 distribution in
Sapporo, Japan, using a porous glass substrate impregnated
with a Saltzman reagent, an LED, and a photo detector.26,27

The sensor element was a porous glass substrate with
sulfanilamide (SFA) andN,N-dimethyl-1-naphthylamine
(DMNA). A specific absorption peak appears at 525 nm,
and the absorbance increases as exposure time or concentra-
tion increases. The interference from NO in the analysis of
NO2 was not significant. A photo detector received the light
from a LED through the porous glass substrate. Its voltage
was read by a microcomputer through an A/D (analog to
digital) converter. The pump was not used because the wind
blew constantly, and its performance was not influenced by
the wind speed with the range between 0.5 and 5 m/s.

Those sensors were placed around the roadway intersec-
tion, as is shown in Figure 14. The measurement area is an

Figure 11. Sequence of visualized images in a wind tunnel.
Reprinted with permission from ref 22. Copyright 2002 Elsevier
Science.

Figure 12. Histogram of errors in estimated direction obtained in
wind tunnel.

Figure 13. Visualized images around the gas leakage point. Thick
arrows show direction of gas flows observed in visualized images.
Reprinted with permission from ref 22. Copyright 2002 Elsevier
Science.

Figure 14. The locations of 10 NO2 sensors in Sapporo, Japan.
Reprinted with permission from ref 26. Copyright 2003 Elsevier
Science.
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inner-city area with two main roads of high traffic density
(L1 and L2) and two tall buildings (B1 and B2), a large
parking area (P), and markets (M). Approximately 24 000
vehicles pass these two main roads. They set a network
composed of 10 sensor nodes to look at spatial and temporal
variations of NO2 concentrations every hour.

The measurement data during 24 h are shown in Figure
15. It shows the averages of 9 values from 9 different days.
The typical pattern consists of a high level in the morning
and in the evening and a low level during the night and in
the afternoon. The proximity of road traffic increased NO2

level. The small peak early in the morning was related to
the peculiarity of this area where many trucks waited for
the markets to open near the road early in the morning. At
all the nodes 8, 9, 6, and 10 behind the tall building with
southeast wind, the NO2 level was low in the middle of night
and the highest around noon. They said that the phenomenon
of “street canyon” due to the tall buildings might occur. It
was found that the concentration distribution was influenced
by tall buildings and wind direction when they checked the
wind direction.

Tsujita et al. reported the sensor network made up of
semiconductor gas sensors to monitor NO2.28 The temperature
and humidity sensors were also included in a sensor node to
compensate for the sensor response. Moreover, a new
autocalibration method was proposed to achieve maintenance-
free operation for the sensor network. The lack of long-term
stability is a serious problem of a gas sensor, which causes
the deterioration of the measurement accuracy over time.
Frequent recalibration is not realistic.

The network connectivity can be used not only for
collecting the measurement data but also for the calibration

and diagnosis of the sensors. The measured concentration
can be easily compared through the network with those
measured at nearby sensor nodes at government monitoring
station. Although the different concentrations are usually
monitored at different sites, the pollutant concentration in
the whole local area becomes uniform in a certain weather
condition. Each sensor in a network can be calibrated at that
condition.

The case study was performed in the area shown in Figure
16. The semiconductor gas sensor and NOx analyzer were
placed at the university (Tokyo Institute of Technology). The
four stations around that university were the government
monitoring stations with gas analyzers. The hourly mean data
measured at those stations are available at the web site.

The autocalibration procedure is as follows. In normal
circumstances, NO2 concentration in an urban area is high.
In that case, the concentration within this local area is not
uniform. However, it would be reasonable to consider that
the concentration at the monitoring site is almost zero when
the concentrations of all the stations around the monitoring
site were near zero. This unusual low concentration might
be obtained due to small traffic on a national holiday or
extremely large dilution of NO2 in a stormy day. The gas
sensor output around the baseline can be calibrated on this
special case by assuming the uniformity of the concentration.
A sensor at a node connected to a network is automatically
calibrated using this assumption.

The raw sensor data and the data reported at the environ-
mental monitoring stations were collected for several months.
The initial calibration of the gas sensor was performed
immediately before starting the long-term measurement. Two
months after the gas sensor was calibrated, the measurement
error increased to∼40 ppb. Figure 17 includes the occasion
when the calibration was performed. Dashed line shows that
calibrated sensor value after adjusting the sensor baseline at
1445 h to the average of the concentrations reported from
surrounding stations. The sensor output after the baseline
adjustment agreed well with NO2 concentration obtained
from NOx analyzer. This autocalibration method was effec-
tive to maintain the accuracy of the sensor system in an
atmospheric-monitoring network.

Another point of view in a sensor placed in the ambient
air is a vapor-sampling method. In the case of a packed
sensor array, sensors are directly exposed to the ambient air.
On the other hand, the air is sometimes sucked by a pump
at each sensor node in the case of a sparse sensor array.

Figure 15. Measured NO2 concentrations at all sites (July 2001).
Reprinted with permission from ref 26. Copyright 2003 Elsevier
Science.

Figure 16. Monitoring stations around the measurement site.
Reprinted with permission from ref 28. Copyright 2005 Elsevier
Science.
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However, sampling schemes for sensors to detect vapors are
important. Settles reviewed the fluid dynamics about sniffers
for the point-detection devices.29 It was also reported that
the vapor discrimination capability was enhanced when a
sensor chamber mimicking a nasal cavity was used.30

2.3.3.2. Gas-Distribution Measurement for Monitoring
Hydrogen Leak. Gas distribution is also measured to check
the leakage of combustible or toxic gases. Gas distribution
should be monitored real time to localize the leakage location.
A wireless network for detecting hydrogen leak was pro-
posed.31 Hydrogen filling stations are expected to become
common in the near future when fuel-cell cars are widely
used. Thus, a sophisticated hydrogen monitoring system is
required. The employed sensor is a FET (field effect
transistor) gas sensor32 with a catalytic metal gate (Pd), which
works at 100°C. Heating the sensor reduced the humidity
influence and the response time.

They constructed a prototype sensor network to detect
hydrogen using 10 sensor nodes. A photograph and block
diagram of a sensor node is shown in Figure 18. Each sensor
node has two sensors, a readout circuit, a controller, a
communication unit, and a power supply. The controller

includes a microcomputer with low power consumption and
short rise time from standby mode to active mode. The
communication unit sends and receives signals at 430 MHz.
The communication area was wide enough to cover a
hydrogen filling station (at least 100 m2). The function of
reducing the power was implemented. Initially, the sensors
worked at room temperature without heating. Once the sensor
signal exceeded the threshold, the microcomputer woke up
to change from standby mode to active mode. Then, it
switched the heaters attached to sensors. Each sensor node
consumed much power only when hydrogen was detected.
Testing showed that the signal came to the access point
within 0.3 s after the sensor was exposed to hydrogen.

2.3.3.3. Bad-Smell Sensing Network.The final topic in
this subsection is a bad-smell sensing network composed of
gas-detector tubes. Recently, the deterioration of the environ-
ment caused by bad smell has become one of the problems
in daily life. Although the gas chromatograph/mass spec-
trometry (GC/MS) method is often used to analyze gases, it
is time-consuming. Moreover, it is impossible to do the onsite
monitoring when GC/MS is used. Gas-detector tubes were
used here since they are cheap and easily handled.33

In the gas-detector tube, the fundamental function of the
chemical reaction between the analyte and the reagent system
is to form color compounds that make the reaction visible.34

A gas concentration is visually obtained by reading the length
affected by the color change. Although the discoloration-
layer length has been manually read, the optical sensor
enables the automatic measurement of the gas detector tube.
The automatic measurement increases the accuracy and the
reproducibility of the measured data. Moreover, the sensitiv-
ity is enhanced by the continuous gas sampling and capturing
the image of the gas-detector tube because of the accumula-
tion effect. Three types of image sensors such as A4-size
optical scanner,35 one-dimensional CCD sensor,36 and mobile
phone camera37 were utilized to capture the image of the
gas-detector tube. When each sensor system is equipped with
a communication module, the sensing network is realized.
The bad-smell sensing network was constructed and was
applied to the measurement at the paint factory.38

The photo of the gas-detector tube (Gastec, No. 71) is
shown in Figure 19. When methyl mercaptan vapor was
flowed to the gas-detector tube, its color changed from white
to yellow. The selectivity of the gas-detector tube is larger
than that of typical gas sensor, and a few hundreds kinds of
gas-detector tubes are commercially available. The disad-
vantage of the gas-detector tube is its irreversible reaction.
Once the discoloration occurs along the whole length, it
cannot be used again.

Since the brightness change along the detector tube axis
is not smooth, the noise reduction technique was applied to
the image of the gas-detector tube.35 Using the method in
ref 35, the discoloration-layer length was obtained. The result
is shown in Figure 20 when several temporal changes of
gas concentrations were tried. The gas was supplied from

Figure 17. Comparison of NO2 concentration with gas sensor and
NOx analyzer when autocalibration was performed. Reprinted with
permission from ref 28. Copyright 2005 Elsevier Science.

Figure 18. Photo and block diagram of sensor node for hydrogen
detection. Reprinted with permission from ref 31. Copyright 2005
IEE of Japan.

Figure 19. Discoloration of gas detector tube exposed to methyl
mercaptan.
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the blender based upon high-speed switching of a solenoid
valve.39 The concentration was a relative one with the unit
[% RC]. 100 [% RC] was the maximum concentration and
corresponded to 2-2.5 ppm.

The two curves in the left portion correspond to concen-
trations 100 and 30 [% RC]. It was found that the slope of
the curve became larger when the concentration became
higher. The two curves in the right portion were obtained
when the vapor with the concentrations 10, 0, 30, 0, 100, 0
[% RC] was exposed for each corresponding 4 min. The
reproducibility was good because the two curves with the
same concentration profiles were almost overlapped. More-
over, the discoloration stopped when the tube was exposed
to air at 0 [% RC]. The discoloration stopped at 4.5 cm
because that point is the edge of the reagent region.

A photo of the gas-detector tube system combined with a
one-dimensional CCD sensor is shown in Figure 21. It
includes a one-dimensional CCD, LEDs for illumination, a
microcomputer, and wireless LAN (local area network)
modules. The gas-detector tube was put into the black acrylic
box to prevent influence of the light from the outside. Using
this system, the gas (methyl mercaptan) with low concentra-
tion (30 ppb) was measured as is shown in Figure 22. The
accuracy of measuring the length of the discoloration layer
was much better than that of typically used manual inspection
because it was difficult to check the brightness change within
the region of 1 mm by manual inspection. However, a tiny
change of the discoloration layer was clearly captured by
the CCD image sensor. The sensitivity was improved by 1
order of magnitude compared with the manual inspection.

Since this system has the function of communication, the
data from the multiple sensor nodes can be collected through
the wireless LAN. The six sensor nodes were placed at the

corridor of the building. The measurement area was 2 m×
20 m, and the sample was propion aldehyde. Sensor nodes
5 and 6 were 20 m away from the source, and those nodes
were placed outside the building. The petri dish filled with
the liquid of propion aldehyde was placed at the corridor,
and the concentration just above the petri dish was 18 ppm.

Figure 23 shows the gas distribution obtained from six
sensor nodes. The gas-detector tube responded to the vapor
at the place even 20 m away from the source. Although the
highest concentration was measured at sensor node 2, it was
∼200 ppb. The response at node 4 was higher than that at
node 3, whereas the response at node 6 was higher than that
at node 5. This phenomenon might be caused by the change
of the wind direction along the corridor, as is illustrated in
Figure 23. This result indicates that it is possible to do the
field measurement using a bad-smell sensing network
composed of gas-detector tubes.

Although the image of a single gas-detector tube is
captured using a one-dimensional CCD sensor, the image
of multiple gas-detector tubes can be simultaneously captured
when two-dimensional image sensor is employed. Moreover,
it is better to collect the data even when the sensor nodes
are far away from each other. Thus, the mobile phone camera
was used because of its communication capability. The photo
of the sensor node using the mobile phone camera is shown
in Figure 24. The light source and the multiple gas-detector
tubes were placed inside the black acrylic box. The mobile
phone camera was placed at the top of the acrylic box. It
was controlled by a microcomputer, and the image was
periodically captured. The measurement can be automatically
performed. The concept of a bad-smell sensing network using
a gas-detector tube and a mobile phone camera is illustrated
in Figure 25. Each sensor node sends the host computer the
image file attached to the e-mail. The host computer collects
the image files from many nodes, and the gas distribution is
obtained after the analysis. Using this system, it is possible
to collect the data from many sensor nodes located far away
from each other.

Figure 20. Temporal change of discoloration-layer length under
several gas concentration profile (methyl mercaptan). Reprinted with
permission from ref 35. Copyright 2004 IEE of Japan.

Figure 21. Photo of gas detector tube system combined with one-
dimensional CCD image sensor.

Figure 22. Brightness distribution along axis of gas detector tube
for 30 ppb methyl mercaptan. Reprinted with permission from ref
36. Copyright 2006 Elsevier Science.

Figure 23. Result of gas distribution measurement at corridor using
bad-smell sensing network composed of gas detector tubes.
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2.3.4. Measurement of Continuous Distribution of Gas
Using Optical Method

2.3.4.1. Backscatter Gas Absorption Imaging.Back-
scatter absorption gas imaging (BAGI) is a technique to
realize the real-time visualization of gas plume using laser-
based remote sensing.40 A field is illuminated by a narrow-
bandwidth infrared laser. Gas visualization occurs if a plume
absorbing the laser radiation is located in that field. Its
presence causes a dark plume image in the video picture.

The description of the long-range BAGI imager is sum-
marized here.41 The imager operates in a raster-scanned mode
to achieve real-time laser-illuminated imaging at a wave-
length between 9 and 11µm tuning range of the CO2 laser.
Scanning of both the 18 W continuous-wave CO2 laser beam
and the instantaneous field-of-view of the single-element
detector is accomplished using a pair of galvanometrically
driven mirrors.

The imager viewed the release of sulfur hexafluoride gas
at the range of 90 m in the test field. Figure 26 shows BAGI
images under condition of no gas, 3 ppm SF6, and 40 ppm
SF6. The dark plume images were observed when SF6 gas
was present.

There are a few aspects to be considered when BAGI
images are observed. First, gas imaging requires a hard target
in the imager field-of-view. In the case of Figure 26, a 12
ft2 panel was placed to serve as a backscattering surface.
Second, BAGI requires the spatial contrast in gas concentra-
tion. It is not possible to detect uniformly distributed gases.
Third, BAGI has a large signal-to-noise ratio compared with
the passive gas visualization method because of active laser
illumination.

Another approach employed the differential absorption
mode.42 In this mode, two wavelengths, where the light
energy is absorbed and not absorbed by the gas to be
detected, are used, respectively. Images are displayed as
the natural logarithm of the ratio of the on wavelength
absorbed by the gas to the off wavelength not absorbed
by the gas. Using this technique, the topographic scene
image is removed, whereas the plume image is displayed.
Thus, an optical method can be used to obtain a gas plume
image.

Nagashima et al. proposed the wavelength-differential
image obtained by subtracting two images through the
variable interferometer with different transmission spectra.
They observed the plume of butane using this method.43

2.3.4.2. Measurement of Gas Distribution Using Pho-
toacoustic Effect.This method is a combination of an optical
method with an acoustic one. Ochiai et al. studied the
measurement system of the gas distribution using photo-
acoustic effect.44 The experimental setup is illustrated in
Figure 27. Adsorption of light at a certain wavelength occurs
because of the existence of gas. The absorbed energy is
converted to heat, followed by expansion. When the light
illumination is periodically performed, the expansion and
contraction occur synchronously with light illumination.
Then, the sound is generated. The laser beam is two-
dimensionally scanned. The generated sound is detected by
three microphones placed three-dimensionally. The method
of localizing a sound source can be used to determine the
location of the gas source. Ochiai et al. applied this method
to the localization of methane source. This method is
fascinating because the gas source can be replaced with a
sound source and the problem of the sound-source localiza-
tion in place of the gas-source one is solved.

Figure 24. Photo of sensor node using mobile phone camera.
Reprinted with permission from ref 37. Copyright 2007 Elsevier
Science.

Figure 25. Concept of bad-smell sensing network using gas
detector tube and mobile phone camera.

Figure 26. BAGI plume image taken at a range of 90 m. Top left
image is taken at no gas release. Top right image is taken with 3
ppm SF6 release; lower image is taken with 40 ppm SF6 release.
Reprinted with permission from ref 41. Copyright 1997 SPIE.

Figure 27. Experimental setup for gas-distribution measurement
using photoacoustic effect.
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2.4. Presentation of Virtual Odor Source
Recently, several researchers were interested in forming

the odor plume in a virtual environment.45 People can
perceive the object with smell in that environment. In virtual
reality, an olfactory display to present smells is focused on.46

The direction to an odor source, the feeling of approaching
or going away from it, may be realized even if the actual
odor source is not in front of people. Thus, one of the
research studies about an olfactory display is to localize an
odor source in a virtual environment.

Yamada et al. proposed the wearable olfactory display as
is shown in Figure 28. The wearable olfactory display is
equipped with a man in the photo. The gas concentration
can be controlled using this system, and a tag reader and a
radio frequency identification (RFID) tag were used to
determine his position. The smell flowed from the slit in
the adaptor indicated as the output in this figure. The intensity
of the presented odor was controlled by changing the ratio
of the air flow rate to that of the odor flow rate. The flow
was driven by a DC motor air pump. By changing the
concentration of the gas presented from a wearable olfactory
display according to the position obtained from the tag reader,
a gas field model in a wide space was realized in a virtual
environment. When a subject approached the virtual odor
source, the intensity of the odor from the slit increased. On
the other hand, the odor intensity decreased as the subject
was away from the virtual odor source.

The gas field model employed here is an isotropic solution,
assuming that the diffusion equation without air stream is
valid. Although this assumption is not valid in the actual
case because gas molecules are mainly carried by the air
flow, they used this gas field for the first step to realize the
virtual olfactory environment.

Several subjects tried to find the virtual odor source within
the area 18 m× 9 m. Tracking behaviors of the odor source
and temporal changes of gas concentrations are shown in
Figure 29. From that figure, both subjects reached the vicinity
of the odor source by trial and error, changing their directions
on the basis of the sensation of changing odor. They said
that the subjects could perceive spatial information of odor
presented by the wearable olfactory display. The subjects
took two ways to explore the virtual odor source. Subject C
chose the strongest point of odor after searching through the
entire region. On the other hand, subject D walked randomly
and changed the direction so that a stronger perception of
the odor could be obtained.

This is a very simple case of the presentation of the virtual
odor source. In the actual situation, the odor plume is
governed by the wind. This behavior is obtained by solving
the Navier-Stokes equation. This is the fluid dynamics
problem to be solved using a finite-element method, and it

consumes much time to obtain the exact three-dimensional
solution. The tradeoff between the time and the accuracy
should be examined when the odor source in the virtual
environment is studied.

3. Analysis of Temporal Response
In addition to the traditional static method, the dynamic

behavior of the gas sensor offers useful information of odor
identification. First, the sensor dynamics model and its
analysis method are described. Especially, the methods of
extracting time constants based on the diffusion model and
the autoregressive (AR) model are presented. The application
of the system-identification model to the analysis of the gas
sensor is also explained. The frequency analysis is often
useful for extracting the features from the temporal data. It
is also described here. Finally, the temporal-data analysis of
the preconcentrator with variable temperature with its
interesting feature is shown. Thus, the analysis of the sensor
dynamics is reviewed in this section.

3.1. Analysis of Sensor Dynamics
It is required to obtain both input and output signals when

we determine the model of sensor dynamics. However, it is
not always possible to know input signal, i.e., the temporal
change of vapor concentration. Thus, a certain situation
should be considered to know the input signal.

The simplest method to analyze the dynamic behavior is
to obtain the step response of the gas sensor.47 They reported
that the model parameters derived by fitting the model to
the experimental data of the step response represented the
type of the gas and its concentration. However, the gas
concentration change should be much faster than the time
constant of the gas sensor. Moreover, the concentration
should be kept constant after the beginning of the vapor
exposure.

The second method is to obtain the impulse response of a
gas sensor.48 When we use the simple vapor supply system
as is shown in Figure 30, it is very difficult to keep the
concentration constant during the vapor exposure. The air
is flowed from the sample bottle, and the vapor at the
headspace over the liquid is carried to the sensor. Although
the concentration is high at first, it gradually decreases during
the vapor exposure because the flow rate typically exceeds
the evaporation rate of the sample. Since this dynamics is

Figure 28. Odor field presentation system. Reprinted with permis-
sion from ref 45. Copyright 2006 IEEE.

Figure 29. Behavior of tracking virtual odor source and temporal
concentration change according to subject’s position. Reprinted with
permission from ref 45. Copyright 2006 IEEE.
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complicated, it is not easy to model the concentration change
at the outlet. Thus, the sensor was exposed to a very short
vapor pulse, as is illustrated in Figure 31. The concentration
change at the sample bottle can be ignored if the vapor pulse
is much shorter than the time constant of the sensor. Although
the same vapor supply method was used, the time for vapor
exposure is very short: just 1 s. In this situation, we do not
have to know the input signal, i.e., vapor concentration.

In the third method, the vapor concentration at the sensor
is allowed to be dynamically changed. In this case, it is
required to know the vapor concentration change at the sensor
precisely. One of the methods is to use a sensor with a very
fast response.49 Although that sensor has a time constant of
a few milliseconds, the gas species to be detected are limited.
Thus, the visualization method of the gas flow using an
optical tracer described in earlier section was used.

In this approach, an optical tracer is effective to obtain
the instantaneous vapor concentration at a sensor using the
gas-distribution visualized system shown in Figure 3. The
brightness change at the CCD camera was measured
simultaneously with the tin oxide gas sensor response to the
sample vapor from the joss stick, as is shown in Figure 32.
The gas sensor (TGS800, Figaro) was placed just below the
light sheet, and the mean brightness within 10× 10 pixels
over the area of the gas sensor was obtained. The sampling
intervals of gas sensor response and brightness were 0.1 and
0.04 s, respectively. The gas concentration changes very
rapidly in the figure since the plume was meandering, as is
shown in Figure 4. Therefore, the brightness calculated from
the image fluctuated rapidly and resulted in the irregular train
of pulses, considerably different from the gas sensor re-
sponse. A similar phenomenon was observed elsewhere.50

The response and recovery speeds of the gas sensor are not
enough to catch up with the concentration pulses in Figure
32. These concentration pulses can be used as input signals
of a sensor response model described in the next subsection.

In this subsection, three approaches based upon step
response, impulse response, and irregular change of the vapor
concentration were described. If the linear superposition
theorem is valid, the impulse response approach is useful
because just the simple vapor supply method is sufficient.
However, the final approach should be taken if the nonlinear
property is dominant.

3.2. Sensor Dynamics Model When Instantaneous
Gas Concentration Is Available

There are several sensor dynamics models.51,52 The
simplest model is a linear one governed by the equation
below.

wherey(t) is a sensor response,u(t) is the gas concentration,
and ai and bi are the coefficients. Laplace transform is
performed by

In the form of Laplace transform, the transfer functionG(s)
is

When this model was applied to the response of the
semiconductor gas sensor as is shown in Figure 32, a second-
order differential equation

is assumed, wherels(t) corresponds to the steady-state
response to the vapor with the concentration at timet. ls(t)
can be in advance obtained from the calibration curve.

Ri, âi, and gi are the coefficients. In the case of the
semiconductor gas sensor, the rise time of the response is
much shorter than the recovery one. Thus, the waveform is
divided into two phases such as response and recovery

Figure 30. Simple method of supplying headspace vapor.

Figure 31. Vapor concentration change in pulse vapor supply
method.

Figure 32. Sensor response measured simultaneously with gas
concentration obtained using optical tracer. Reprinted with permis-
sion from ref 6. Copyright 1998 Elsevier Science.
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phases, as is illustrated in Figure 33. In eq 9,i is equal to 1
for the response phase, whereas it is 2 for the recovery phase.

Equation 9 is transformed into the discrete form

where y(k) ) gas sensor response at timek∆t; ls(k) )
transformed steady-state sensor response corresponding to
the brightness at timek∆t; ∆t ) sampling interval (0.1 s);
pi, qi, andri ) constants;i ) 1, response phase; andi ) 2,
recovery phase.

If ls(k) < y(k), y(k) is in the response phase, whereas it is
in the recovery phase ifls(k) > y(k). The parameterspi, qi,
and ri in eq 10 were estimated for the response phase and
the recovery one, respectively. Comparison of the estimated
response with the measured one is shown in Figure 34. The
estimated gas sensor response agreed well with the experi-
mental one.

The model above is effective when we use a slow-speed
gas sensor. However, it is not sufficient for a faster-speed
gas sensor since the switching between the response and
recovery phases is too frequent. The deviation was larger
when a QCM (quartz crystal microbalance) gas sensor was
used. Thus, another approach is to construct a model using
a neural network.53 When we use a neural network, it is not
necessary to divide waveform into response and recovery
phases because it is a nonlinear technique. A neural network
employed here was a MLP (multilayer perceptron) trained
with error back-propagation algorithm.54,55 It is possible to
realize any continuous function from input to output using
a three-layer network, given a sufficient number of hidden
units, proper nonlinearities, and weights.56 Thus, a neural
network illustrated in Figure 35 was used. The sensor
response atk + 1 is obtained usingls(k + 1), ls(k), y(k), and
y(k - 1), as is illustrated in Figure 35a. The output of the

neural network, i.e., the estimated sensor response, is fed
back to the input layer when the estimation is performed, as
is illustrated in Figure 35b.

The experimental result is shown in Figure 36. The QCM
gas sensor (29.5 MHz, AT-cut) coated with a sensing film,
phosphatidylcholine, was exposed to triethylamine vapor, and
a tiny hollow polymer sphere was used as an optical tracer.
The sensor data were sampled every 170 ms using a
reciprocal counter.21 The numbers of input, hidden, and
output layer neurons were 4, 20, and 1, respectively. It was
found that the estimated sensor response agreed well with
the experimental one even when the sensor with the speed
faster than that of the semiconductor gas sensor was used.

3.3. Extraction of Time Constant

3.3.1. Diffusion Model and Its Modification

An odor-sensing device often called an electronic nose
consists of a sensor array and a pattern-recognition technique.
The output pattern of a sensor array with partially overlap-
ping specificities is recognized by a neural network or mul-
tivariate analysis. Although there are a variety of gas sensors
such as semiconductor gas sensors,57-62 QCM gas sensors,63-72

SAW (surface acoustic wave) gas sensors,73-77 cantilever-
type gas sensors,78,79FPW (flexural plate wave) gas sensors,80

conducting polymer gas sensors,81-84 carbon black polymer
gas sensors,85-87 MOS (metal oxide semiconductor) gas
sensors,88-90 MS (mass spectrometry),91-93 IMS (ion mobility
spectrometry)94 high-speed gas chromatographs,95 optical gas
sensors,96-99 and electrochemical gas sensors,100 more in-

Figure 33. Scheme for dividing a waveform into two phases such
as response and recovery phases. Reprinted with permission from
ref 6. Copyright 1998 Elsevier Science.

Figure 34. Comparison of estimated semiconductor gas sensor
response with measured one when optical tracer and second-order
model were used. Reprinted with permission from ref 6. Copyright
1998 Elsevier Science.

y(k + 1) ) piy(k) + qiy(k - 1) + rils(k) (10)

Figure 35. Structure of MLP (a) in the training and (b) in the
estimation when transient gas sensor response is estimated using
an optical tracer.

Figure 36. Comparison of estimated QCM gas sensor response
with measured one when optical tracer and MLP model were used.
Reprinted with permission from ref 7. Copyright 2002 IEICE of
Japan.
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formation is required to achieve reliable discrimination. Thus,
time constant as well as amplitude information has been
studied to use an element of a pattern vector.

When we obtain the time constant, a sensor-response
model is required. First, the sensor-response model based
upon the diffusion model is described. When a QCM gas
sensor was considered, vapor diffused into a coating film,
as is illustrated in Figure 37. Gas molecules diffuse into a
sensing film with the thicknessl according to Fick’s law.101

The concentration in the sensing filmc(t,x) is governed by

under the boundary conditions

whereC0 is the concentration in the gas phase. Solving eq
11 under the boundary conditions above,

is obtained, assuming the diffusion coefficientD is not
dependent onc(t,x), the concentration inside the sensing film.
The amount of sorptionys(t) is

At equilibrium,

Thus,

is obtained.
When the diffusion governs the vapor sorption onto the

sensing film, the experimental data fits well to the curve of
eq 16. However, the curve fitting was sometimes unsuccess-
ful. Not only the diffusion but also the surface adsorption
should be taken into account. Thus,

can be used for the curve fitting wherem1 and τ1 are the
amount of adsorption and its time constant, respectively,
assuming that the speed of the surface adsorption is much
faster than that of diffusion. Practically, the term withoutn
) 1 can be ignored in most cases. Then, the simple equation
using two time constants

can be used for the curve fitting of a QCM gas sensor.101

Moreover, the time constant in the response phase is different
from that in the recovery phase in the same manner as that
of the semiconductor gas sensor in the previous section. Since
the time constant in the recovery phase is longer than that
in the response phase, it is easier to analyze the waveform
during the desorption so that many data points can be used
for the curve fitting.

3.3.2. AR Model
In contrast to the method above, the AR (autoregressive)

model is also effective to determine the time constant.102 The
AR model is typically used to estimate parameters in a
dynamic system. It is assumed thatys(k) satisfies the AR
model

whereL is the order of the model,e(k) is the residual error,
andRi is the scalar coefficient. By solving the equations

the optimalRi can be obtained. Assuming thatys(k) is the
sum ofL exponentials,

is obtained whereτi is the time constant andbi is the scalar
coefficient. TheZ-transform of eq 21 is

The denominator ofZ[ys(k)] is

On the other hand,

Figure 37. Gas sorption at sensing film of QCM gas sensor.
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using eq 19. Then,

Using eqs 22, 23, and 25, it is found thatri is the solution of
A(z-1) ) 0.

Thereafter, the time constantτi is obtained. Nakamura et
al. applied this method to the step response of a QCM gas
sensor and obtained the time constants with high accuracy.102

Using this method, the time constants of acetone, 2-butanon-
one, methanol, ethanol, benzene, and toluene were obtained.
The PCA (principal component analysis) result of the steady-
state responses of six sensors and those of time constants
are shown in parts a and b of Figure 38. It was found that
the separation among samples became clear when the time
constant information was included. They also proposed the
method using linear filter and plural sensors even when the
gas concentration was changed.103

3.3.3. System Identification Model
The effort to build a mathematical model of a gas sensor

as a dynamical system has been done from the viewpoint of
system identification. Here, the attempt to model the sensor
response to the gas mixture is described. The gas sensor is
modeled as a MISO (multi-input single-output) system.104

When the nonlinearity is included, the three methods such
as functional expansions, block-structured network model,
and neural network were proposed.

Functional expansions are valid representations of non-
linear systems under assumptions (stationarity). In the case
of a nonlinear time-invariant system, the transfer function
can be expressed as a Volterra functional expansion which
includesn kernels.

The block-structured model consists of interconnections
of two different classes of blocks such as dynamic linear
blocks and static nonlinear blocks. Figure 39 shows several
possible typical topologies for modeling the sensor re-
sponse to a binary mixture.105,106These models are easier to
implement compared with the kernel representation.

Another method is the neural network. The neural network
can model a highly nonlinear relationship if there is enough
hidden-layer neurons. Time-delayed and recurrent-type neural
networks were used to obtain the concentration changes of
the binary mixture (octane and toluene).107

Although these methods might be effective to represent
the dynamic model of the gas sensor, only the slow dynamics
were focused on in the literature.105,106It is interesting if faster
dynamics around a second is studied.

3.4. Frequency Analysis
Frequency analysis is useful when we try to extract

information from the transient response as much as possible.
Amrani et al. reported that the frequency characteristic of
dissipation factor of a conducting polymer gas sensor had
the information of gas discrimination.108 The vapor in the
headspace above the liquid was flowed to the sensor cell,
and the dissipation factor was measured using an impedance

analyzer. The measurement data of the acetone-methanol
binary mixture is shown in Figure 40. It was found that the
spectrum changed according to the composition. They said
that the spectrum information was useful for the quantifica-
tion of the multiple components even if only a single sensor
was used.

The multiexponential models such as Gardner transform,
METS (multiexponential transient spectroscopy), Pade-
Laplace, and Pade-Z were applied to the analysis of
conducting polymer gas sensor responses. It was reported
that Pade-Laplace and Pade-Z models had better resolution
capabilities than the other two methods.109

Fourier analysis and wavelet transform were often used
to analyze the signals of the temperature-modulated gas
sensors including the normal semiconductor gas sensors and
microhotplate sensors.110-112 Spectrum analysis is effective
to extract the feature of the waveform. However, most of
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Figure 38. PCA diagram of (a) only normalized saturation-mass
vector and (b) normalized saturation-mass vector and time-constant
vector. Gases are acetone (O), 2-butanone (9), methanol (0),
ethanol ([), benzene (]), and toluene (2). Concentration of each
sample ranges from 30 to 3000 ppm. Reprinted with permission
from ref 102. Copyright 1993 IEE of Japan.

Figure 39. Several possible block-structured models of a sensor
response to binary gas mixture. Reprinted with permission from
ref 105. Copyright 1996 Elsevier Science.
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those methods have been used to analyze the vapor with the
fixed concentration profile such as the step change.

Spectrum analysis technique can be used to enhance the
robustness against the dynamic plume behavior.113 The
irregular change of the gas concentration occurred at the
plume, whereas the concentration is stable in the closed
system. The irregular changes of the gas concentrations of
apple and Muscat flavors are shown in parts a and b of Figure
41. PCA diagram (not shown here) reveals that there was
no separation between apple and Muscat flavors when only
the magnitudes of the sensor responses were used in the open
field with the plume. Although the time constant of apple
flavor is different from the Muscat one, it is impossible to
extract the time constant under the irregular change of the
concentration in the time domain.

Thus, the Fourier analysis method was applied. Since the
concentration changes irregularly and rapidly, the spectrum
of the gas concentration approaches white noise. In this
situation, a gas sensor works as a LPF (low-pass filter). Thus,

the time constant in the time domain corresponds to the cutoff
frequency in the frequency domain. This concept is illustrated
in Figure 42. When the time constant is different, a different
cutoff frequency is obtained, even under the irregular and
rapid change of the gas concentration. Good pattern separa-
tion is obtained if the appropriate frequency component is
selected.

Moreover, the real-time odor classification is required in
the actual situation. Since many sampling points are typically
required for the spectrum analysis, it takes much time to
collect the data. The short-time Fourier transform (STFT) is
the pseudo-real-time technique where the data in the moving
window are used for the analysis. The spectrumS(m,ω) at
time m in the discrete form is

wherew[n] is the window function andn andmare integers.
s[n] is the sensor response signal in the time domain. One
of the window functions is Hann Window, expressed as

whereN is the window width in the discrete form.
Several frequency components were used as elements of

a vector for training and estimation. However, the discrimi-
nation became unstable when too many frequency compo-
nents were used. Thus, the window width in ref 113 was
just 4 s including 32 measurement points. The window moves
every1/8 s. Furthermore, the variable selection based upon
the discrimination analysis with Wilks’ lambda114,115 was
performed to find the optimal frequency components. Only
2 variables among 64 were selected (4 sensors× 32 points/
2). This result is shown in Figure 43. There is no information
loss in this diagram because the data is two-dimensional after
the variable selection. It is clear that the pattern separation
is considerably improved when the STFT approach is
adopted. Then, LVQ (learning vector quantization) was used
to classify the samples.116 The reference vectors of LVQ
almost reflected on the data distribution after training, as is
shown in Figure 43. As a result,>90% of the recognition
probability was achieved after the improvement.

Figure 40. Frequency characteristic of dissipation factor of
conducting polymer gas sensor. Reprinted with permission from
ref 108. Copyright 1998 Elsevier Science.

Figure 41. Sensor responses to odors in dynamically changing
concentrations (a) apple and (b) Muscat flavors. Reprinted with
permission from ref 113. Copyright 2007 Elsevier Science.

Figure 42. Concept of robustness enhancement against plume
behavior using short-time Fourier transform.
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3.5. Temporal Data for Preconcentrator
In this section, the temporal information includes that of

the sample discrimination, whereas the sensor dynamics has
been described in the earlier subsection. Here, a preconcen-
trator with variable temperature is used.

The preconcentrator is typically used to enhance the sensor
sensitivity.117-120 Grate et al. proposed the system of a SAW
sensor array combined with a preconcentrator. The dual
preconcentrator tube system is shown in Figure 44. The upper
PCT (preconcentrator tube) was operated on a 2 min cycle,
while the lower one was operated on a 14 min cycle. The
vapor collection during the 14 min cycle enabled more
sensitive detection, whereas a longer response time was
required. Sample airflow directions are indicated by the
arrows, where the solid line indicates direct sampling, the
dashed line indicates delivery of the preconcentrated sample
from the upper PCT to the sensor array, and the dashed-
dotted line shows delivery of preconcentrated sample from
the lower PCT. The preconcentrator tube consisted of a1/4
in. o.d. by1/8 in. i.d. glass tube packed with 40-60 mesh
Tenax GC over approximately a1/4 in. length of the tube.

The coil of nichrome wire wrapped around the glass tube
provided the heat for thermal desorption. Figure 45 shows
the sensor response to DMMP (dimethyl methylphosphonate)
when both 2 min and 14 min cycles were adopted. It was
found that the sensor response became larger as the vapor
collection time increased.

It was also found that the gradual increase in the
temperature of the preconcentrator enables the higher-order
sensing,121 including both distinguishable waveform and
sensor-array output patterns, although the heat pulses with
various temperatures were previously applied to the precon-
centrator.122

One of the examples is shown in Figure 46.123 The three
QCM gas sensors coated with DEGS (diethylene glycol
succinate), squalane, and UCON90000 were used together
with the adsorbent Tenax-TA. The sample was the binary
mixture of hexyl acetate and butyl acetate. The first peak
around 30 s should be ignored since the sensor responded
to the vapor not accumulated at the preconcentrator. The
ramp of the temperature from room temperature to 200°C
started at 60 s and stopped at 180 s. The peak occurred at
the desorption temperature of the corresponding compound.
It was found that two peaks corresponding to butyl acetate
and hexyl acetate were observed. This separation provides
the enriched information for the pattern recognition.

Figure 47 shows the grayscale images of six sensor
responses to apple flavors with various recipes. The wave-
forms of six sensors for 60 s are shown in the figure. The
white portion means a large sensor response, whereas the
black portion has no sensor response. The apple flavor was
composed of four components: trans-2-hexenyl acetate

Figure 43. Pattern vectors obtained using STFT followed by
variable selection and reference vector of LVQ after training.
Sensing films are Ap-L (Apiezon L) and PEG (polyethylene glycol)
1000. Reprinted with permission from ref 113. Copyright 2007
Elsevier Science.

Figure 44. Schematic diagram of the sampling system with dual
preconcentrator tubes, where PCT indicates preconcentrator tubes
and the circles indicate the pump. Reprinted with permission from
ref 117. Copyright 1993 American Chemical Society.

Figure 45. Response of SAW gas sensor (FPOL) to DMMP. The
response is followed through two complete 14 min sampling
periods. The numbers of 2 020 and 18 350 indicates the peak heights
in Hz of 2 min and 14 min PCT mode responses. Reprinted with
permission from ref 117. Copyright 1993 American Chemical
Society.

Figure 46. Sensor responses to binary mixture (butyl acetate and
hexyl acetate) under gradual increase in temperature of precon-
centrator. Reprinted with permission from ref 122. Copyright 2000
Elsevier Science.
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(THA, softly green note), trans-2-hexenal (THL, smell of
grass), isobutyric acid (IBA, sour sweet), and ethyl valerate
(EVA, fruity note). In parts b-e of Figure 47, the enhanced
note indicates that the portion of the corresponding com-
pound in the mixture was twice increased. It was found that
those samples with different recipes were easily discriminated
using those images.

Moreover, the time courses of the sensor responses (six-
dimensional data for 60 s) of three samples are projected
onto the space obtained from the PCA, as is shown in Figure
48. THA × 2, IBA × 2, and EVA× 2 indicates enhanced
green note, enhanced sour sweet note, and enhanced fruity
note, respectively. Every sample was measured three times.
Since the loci of the six different sensors have different
features, those might be identified using a character-
recognition technique.

The preconcentrator with variable temperature of the
gradual ramp is effective to obtain rich information of the
sample. The second-order data obtained from the precon-
centrator with variable temperature in combination with the
sensor array can be regarded as images. Each image of apple
flavor with different composition was clearly distinguishable
using the preconcentrator with variable temperature.

4. Sensing in Both Spatial and Time Domains
In this section, we review sensor array systems that involve

sensing in both spatial and time domains. As shown in
section 3, there are a variety of works devoted to the analysis
of chemical sensor data in time domain, since such analysis
is helpful in almost all applications of chemical sensors. In
any systems equipped with chemical sensors, we have to
deal with transient responses even if the intention is just to
wait for the sensor signals to reach their steady states. On
the other hand, spatially distributed sensor arrays were
developed to measure spatial distributions of chemical
substances, as described in section 2. However, only a limited
number of works were so far addressed to combining the
sensing and signal processing both in spatial and time
domains. This is partly because working in a single domain
is already complicated enough. For sensing in either domain,
there is no established method that you can always rely on,
and therefore, there are a lot of things to be done. Nonethe-
less, sensing in both spatial and time domains is extremely
beneficial in some applications and provides information that
cannot be obtained by sensing in a single domain.

4.1. Observing Change in Spatial Chemical
Distribution with Time

The most straightforward examples in which both spatial
and temporal features of chemical sensor signals are dealt
with are the gas sensor arrays for measuring the spatial
distribution of a chemical substance. How a chemical
substance spreads in the given environment can be analyzed
by observing the change in the measured spatial concentra-
tion distribution over time. When Yamasaki and Hiranaka
reported their gas sensor array system, the demonstrations
on measuring the growth of ethanol and ethyl ether gas
clouds were presented in their paper.8,9 A sequence of gas
distribution maps was obtained by measuring the gas sensor
responses at 1 s interval. Although this would be the best
way to measure the entire gas distribution in a given
environment, the number of sensors required is the problem
if a large area is to be covered with high spatial resolution.
The problem will be alleviated if the sensor data can be
collected through a wireless network. The sensor network
technology is reviewed in another paper in this special
issue.124

The olfactory video camera was developed in a comple-
mentary approach. A highly packed small sensor array was
fabricated to measure the gas flow over the sensor array, as
shown in section 2.3.2. The direction of the gas flow was
estimated by comparing the successive snapshots of the gas
concentration distribution. The position of the gas source was
localized by reversely tracking the observed gas flow. To
make this approach work, care should be taken about the
temporal resolution. The response and recovery times of the
gas sensors must be short enough to observe clouds of gas
passing over the small sensor array. Otherwise, all sensors
respond and recover at the same time. The maximum

Figure 47. Image of six sensor responses to apple flavors with
various recipes: (a) image of typical one, (b) image of enhanced
green note, (c) image of enhanced smell of grass, (d) image of
enhanced sour sweet, and (e) image of enhanced fruity note.
Reprinted with permission from ref 123. Copyright 2005 IEEE.

Figure 48. Loci of sensor responses to apple flavors with various
recipes on PC1-PC2 plane obtained using PCA. Reprinted with
permission from ref 123. Copyright 2005 IEEE.
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measurable speed is higher for a larger sensor array since
the difference in time for a gas cloud to reach the upstream
and downstream edges of the sensor array becomes larger.
However, introduction of a large sensor array in an environ-
ment alters the local airflow field around the sensor array.

Another problem of the packed gas sensor array is that it
can measure the gas flow only when the array is placed along
the flow direction. When the flow comes down vertically
against the horizontally placed sensor array, for example, a
complicated turbulent flow field is created around the sensor
array. The sensors no longer respond in an ordered way to
the gas clouds. A spherical gas sensor array shown in Figure
49a was fabricated to overcome this problem.125 The spheri-
cal shape was chosen because of the symmetry in every
direction. As an extension of the same technique, a blimp
robot having a spheroidal sensor array was later developed
(Figure 49b).126 For those sensor arrays, however, a limited
number of sensors were placed rather sparsely because of
the difficulty in fabricating a large sensor array using the
commercially available gas sensors. The gas flow cannot be
measured when gas clouds flowing along the surface of the
sensor array are smaller than the spacing between the gas
sensors. When the microsensor technology advances to a
point where fabrication of a dense array of fast gas sensors
is enabled, the spherical sensor array will become a useful
tool for locating gas sources by tracking gas plumes three-
dimensionally.

Spatially distributed chemical sensor arrays can be used
for applications other than localizing chemical sources.
Sawada et al. proposed to use gas sensor units distributed in
a house to monitor the activity of a resident.127 Each sensor
unit consisted of four different semiconductor gas sensors.
The purpose of the monitoring system is to dispatch a
medical team to the house when something happens to the
resident. If an elderly person living alone in a house becomes
seriously sick, he/she may not be able to ask for help by
him/herself when the symptom has manifested. Various
gaseous chemical components are generated in our daily
activities, e.g., cooking, and in our metabolism. No activity
in the gas sensor signal means that there is no activity of
the resident. Another interesting application of gas sensor
arrays is to place a sensor array in a plastic model of a canine
nasal cavity.30 The interiors of vertebrate nasal cavities, in
which the olfactory receptor cells are distributed, generally
have complicated structures. As the inhaled air goes thorough
the cavity, gaseous components are separated since the cavity
acts in a similar way to a gas chromatography column.
Moreover, the complicated flow paths in the nasal cavity
cause uneven distribution of odorants to the olfactory receptor
cells. Odor molecules with different sizes and diffusion rates
are delivered differently to the receptor cells at different
locations. Stitzel et al. fabricated a nasal cavity model in

which the complicated structure of a canine nasal cavity was
precisely replicated based on the geometric data obtained
using computed tomography scans of a real nasal cavity. Five
fiber-optic vapor sensors were placed in the double-sized
model. Although the same types of sensors were used, the
time courses of the sensor responses were different when
an odor pulse was supplied to the nasal cavity model. A
unique spatial and temporal response pattern was obtained
for a specific odorant, even though a single sensor type was
used. The odor-discrimination capability of electronic noses
can be, therefore, improved by placing sensors in the nasal
cavity.

4.2. Correlating Signal Features in Time Domain
with Spatial Locations

The sensor arrays presented in the previous section were
designed to measure the spatial features of the chemical
signals and to observe their temporal change. There are works
that pursue the opposite approach, i.e., to measure the
temporal features of the chemical signal and correlate them
to the spatial locations with respect to the chemical
sources.128-133 A chemical plume has a patchy structure since
eddies contained in the turbulent flow stretch and twist the
streaks of the chemical substance.134 A series of patches
traveling over a stationary chemical sensor is represented as
a spiky fluctuating signal in the time domain (Figure 50).
The fine structure of the plume is the result of diffusion and
turbulent mixing acted on the patches of a chemical substance
released from the source. Temporal fluctuations of the signal
thus convey some information about how the patches have
been transported from their source to the location of the
sensor. If such information can be decoded from the sensor
signal, it can be exploited to estimate the location of the
chemical source from a remote place. Although there is no
clear evidence, there is a possibility that animals are using
the information encoded in the fluctuating signals when they
are in pursuit of smells.

The signal fluctuation contains a wide range of frequency
components. One of the distinct characteristics of turbulent
flow is that it contains a number of eddies of a variety of
lengths scales.134 The size of the largest eddies is determined
by the geometrical dimension of the flow, which can reach
hundreds of meters for large-scale plumes in the fields. The
kinematic energy of such large eddies is cascaded to
successively smaller eddies to the point at which the eddies
get so small that they are damped by the viscosity. The size

Figure 49. (a) Spherical gas sensor array for the measurement of
three-dimensional gas flow. Twenty-one gas sensors are placed on
a plastic sphere of 17 cm in diameter. (b) Tethered blimp robot.
The direction of the gas source is estimated from the responses of
10 gas sensors attached on the 90 cm long balloon. A wheeled
tractor robot changes the elevation and the position of the balloon
so that it gradually approaches the source location. Figure 50. Intermittent and spiky signal from a stationary chemical

sensor placed in a plume. Burst length is defined as the time
between the leading and trailing edges of a burst of concentra-
tion spikes. Burst return period is defined as the time between the
leading edges of two successive bursts. Peaks much higher than
the mean concentration are often observed even at far downstream
locations because of the sporadic and spiky nature of the chemical
signal.
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of the smallest eddies is, thus, represented by the Kolmog-
orov length scale,η,

whereν is the kinematic viscosity of the fluid andε is the
rate of energy dissipation per unit mass. The Kolmogorov
length scale is typically∼1 cm for the atmosphere128 and
was 0.7 mm134 for the open-channel water flow with the
depth of 20 cm and the mean velocity of 5 cm/s. Eddies
larger than the plume width make the plume meander. On
the other hand, eddies smaller than the plume width stir the
edges of the plume with surrounding clean fluid medium
and, thus, contribute to form the fine internal structure of
the plume. Those structural features are observed as signal
fluctuations with long and short periods, respectively.
Therefore, in order to fully investigate the structure of the
plume, a long record of chemical concentration needs to be
measured at a high sampling rate. The time scale of the
lowest-frequency component is typically several minutes for
most of the flow regimes of interest. The time scale for the
highest-frequency component can be estimated by calculating
the time for an eddy with the size of the Kolmogorov length
scale to pass over the sensor. Typical values are 1 ms for
the atmosphere128 and 0.1 s for the water flow mentioned
above.134 The discussion on the length and time scales so
far was made solely on the velocity field. In reality, however,
the concentration in a single eddy is not homogeneous. The
Batchelor scale,LB, represents the length scale of the smallest
concentration patch134 and is defined as

whereD is the molecular diffusion coefficient. The structure
of the concentration distribution smaller than the Batchelor
scale is immediately faded out by molecular diffusion. The
Batchelor length scale is generally much smaller than the
corresponding Kolmogorov scale since the molecular diffu-
sion is a slow process. For the above-mentioned open-channel
water flow, the Batchelor scale was only 0.02 mm.134

The currently available chemical sensors are not fast
enough to resolve the fine-scale structure of chemical plumes.
Therefore, for analyzing the plume structure, passive tracers
that can be easily detected with high-speed sensors were used
instead of real chemical substances. The basic nature of
turbulent plumes is the same in airflow and in water flow.
A laser-induced fluorescent technique was often used to
observe the underwater chemical plumes.130-132 In this
technique, an aqueous solution of a fluorescent dye is
released in the flow as a tracer, and the laser light sheet is
shed to illuminate a cross section of the plume. The density
of the dye solution is adjusted to be equal to the background
water by adding the appropriate amount of another inert and
lighter chemical substance like ethanol. Two-dimensional
concentration distribution can be measured by recording the
image of the induced florescent light, since its intensity is
proportional to the local concentration of the dye. In some
works, dopamine was used in conjunction with a high-speed
electrochemical sensor, although this is a technique for point
measurement.129The optical visualization technique described
in section 2 has been applied so far to the measurement of
aerial plumes up to 30 frames/s, although the Kolmogorov
time scale of typical aerial plumes is∼1 ms. Extremely
strong illumination is required for video recording with
higher speed. Moreover, particles that are large enough to

create bright images are no longer passive because of the
significant mismatch of the density between the air and the
tracer particles. Therefore, ionized air was used as a tracer
for high-speed quantitative measurement.128 Although the
time resolution in the order of 1 ms can be achieved using
this techniques, it provides the time record of chemical
concentration only at a single point. The data on chemical
distribution is not available. A high-speed photoionization
detector was also used for measuring aerial plumes.133

Since a turbulent plume has a patchy filamentous structure,
bursts of concentration spikes are observed when a stationary
sensor is placed in the plume (Figure 50). Also, the plume
meanders as a whole. Therefore, a single burst starts when
the plume comes to the location of the sensor. The burst
stops when the plume moves away from the sensor. The
result is a series of bursts with periods of no signal between
the bursts. Research efforts were made to investigate which
features of the fluctuating signals can be used to track
chemical plume as animals do. The gradient of instantaneous
concentration is chaotic since the plume has a patchy
structure. The gradient of time-averaged concentration can
be used to track the plume. However, the problem is that
the gradient is small, especially in the direction parallel to
the flow. Moreover, it takes at least several minutes for the
mean of the measured instantaneous concentration to con-
verge to a statistically sound value. Other features of the
time-series chemical signals investigated in the literature
include burst length,128,133 burst return period,128,133 signal
intermittency,128,130,133peak-to-mean ratio,128,133 and rising
slope of the concentration spikes.129,133 However, what
features animals use for plume tracking and what feature is
the most reliable one for human or robotic searchers are still
open questions. How the values of these features change with
the sensor location depends not only on the flow character-
istics, e.g., the turbulent intensity, but also on various
parameters of the experimental setup, e.g., the size of the
chemical source and the detection limit of the sensors.
Therefore, contradicting results were often reported for
different experimental setups.

The general conclusions are as follows, although it is
difficult to summarize the work done so far for the above-
mentioned reason. As a chemical plume extends downstream
from the source location, the width of the plume itself and
that of the plume meandering both increase. This results in
the increase in burst length and burst return period at
locations farther away from the source, although the increase
is not always significant.128 If a pair of sensors is placed
across the flow direction, cross-correlation of the signals from
the two sensors increases with the distance from the source
because of the expansion of the plume width.132 If a chemical
substance is continuously released from the source, the signal
is also continuous when the sensor is close to the source.
As the plume becomes patchy and meandering as it travels,
the signals at far locations generally become more intermit-
tent.133 However, as the patches of a plume are carried by
the flow, their edges are mixed with the surrounding fluid
medium by the small eddies contained in the turbulent flow.
Molecular diffusion also makes those patches grow. These
effects make the signal less intermittent. Therefore, in some
case, the signal intermittency decreases with the distance
from the source.133

The response time of the chemoreceptors of the animals
is in the order of 0.1 s and is not sufficient to fully resolve
the fine structure of chemical plumes.129,133However, there

η ≈ (ν3/ε)1/4

LB ≈ (νD2/ε)1/4
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is a possibility that the response characteristics of the
chemoreceptors are serving as temporal filters to enhance
the reception of specific features of the signals.129 For
example, the chemoreceptors show adaptation to sustained
stimuli and respond more significantly to changing stimuli.
Even if the mean concentration stays the same, the chemo-
receptors respond in different ways to chemical stimuli with
different intermittencies or different rising slopes of the
peaks.

4.3. Frequency Analysis of the Chemical Signals
in Plumes

As described in the previous section, streaks of a chemical
substance released from the source are stretched and twisted
by the eddies contained in the turbulent flow as the chemical
streaks are carried downstream. The fine structure of the
plume is thus created, and the fluctuating signal is obtained
from a stationary chemical sensor. There is a possibility that
the fluctuating signal contains some information about how
the streaks are transported from the source to the location
of the sensor. If the flow at some point between the chemical
source and the sensor has distinctive characteristics, a
particular structure is formed in the plume. The time course
of the sensor signal then comes to have a corresponding
signature. Detection of such a signature will be quite useful
in the search for chemical sources. By analyzing the sensor
signal, we might be able to tell on which route the chemical
substance was transported.

One of the signatures that might be found in the plumes
is periodic modulation of the chemical concentration. When
a blunt object like a cylinder is immersed in a flow, it is
known to periodically generate vortices with alternate rotation
in its wake. The vortices are shed into the flow and form
two staggered rows known as a Ka´rmán vortex street.135 In
the case of a cylinder, the shedding frequency,fs, is
represented as

whereU is the flow velocity andd is the diameter of the
cylinder.Sis a nondimensional parameter called the Strouhal
number, which is known to be constant (0.21) for a wide
range of Reynolds numbers. When a chemical substance is
released in the Ka´rmán vortex street, an oscillatory plume
is created. The introduction of the plume oscillation can be
regarded as frequency modulation from the signal-processing
perspective. A female moth releases a sexual pheromone,
and a male moth tracks a plume of sexual pheromone to
find a mate. When a female is perching on a branch of a
tree, an oscillatory plume might be generated due to the
Kármán vortex street in the wake of the branch or the trunk
of the tree. A chemical plume released from a barrel may
have a similar oscillating structure.

Mafra-Neto and Carde´ investigated the difference in the
moth’s behavior in a continuous plume and in an oscillatory
plume.136 A 3 × 3 cm plastic deflector was placed 4 cm
downstream from a pheromone-impregnated filter paper to
generate an oscillatory plume. A continuous plume was
generated in a similar way but without the plastic deflector.
It was found that male moths,Cadra cautella, take straighter
paths to the pheromone source in the oscillatory plume than
in the continuous plume. In order to track a pheromone
plume, a male moth surges in the upwind when in contact

with a plume. When the contact is lost, the male starts
zigzagging across the wind to find the lost plume. The results
of the behavioral observation suggest that a fluctuating signal
is required for sustaining the upwind progress toward the
source. It should be noted that there is no direct evidence
showing that moths detect the periodicity of the chemical
signal. There is a possibility that the behavioral change was
evoked in response to other properties of the chemical signal,
e.g., the intermittency, since such properties also changed
when the oscillation was introduced.

Justus et al. generated a similar oscillating plume by
placing a circular disk immediately downstream from the
source location.133 A 3 m long and 1 m wide wind tunnel
was prepared, and the wind speed was set to 50 cm/s. In
their wind-tunnel setup, 1000 ppm of propene was released
from the tip of a pipet, and a disk of 3.5 cm in diameter was
placed perpendicular to the flow at 2.5 cm downstream from
the pipet. The concentration of the tracer was recorded at
various locations in the wind tunnel using a fast-response
miniature photoionization detector with a sampling rate of
330 Hz. The frequency analysis was performed on the signals
recorded in the oscillatory and continuous plumes. The power
spectral density plot showed that the chemical signals in both
plumes have a widely distributed spectrum due to the variety
in sizes of the eddies contained in the turbulent flow.
However, noticeable peaks were found in the power spectral
density plot of the signal recorded immediately downstream
(100 mm) from the source of the oscillatory plume. The
frequencies of the peaks match the rate of the Ka´rmán vortex
generation. Those frequency components decayed rapidly
over the distance. At 400 mm from the source, the peaks
were almost buried in the background spectrum.

Kikas and co-workers proposed the use of an array of
chemical sensors to detect frequency modulation introduced
into chemical signals.137-139 Signal fluctuation caused by the
background turbulence contains a wide range of frequency
components. The idea was to use correlation analysis to
detect the small additional frequency component induced by
the Kármán vortex street. When an array of sensors is placed
in the frequency-modulated plume, the fluctuations of the
sensor signals caused by the modulation should be correlated
with each other. On the other hand, the fluctuations caused
by small eddies in the background turbulent flow are
uncorrelated. To find a correlated frequency component, the
coherence spectrum140 was calculated as

whereγAB(f) denotes the coherence between the signals from
sensor A and B at frequencyf. PA(f) andPB(f) represent the
power spectral densities of the signals from sensor A and
B, respectively.PAB(f) is the cross-power spectral density
between the two signals. Coherence is an equivalent of a
correlation coefficient in frequency domain. For a completely
correlated signal, coherence has a value of 1. For a
completely noncorrelated signals, the coherence becomes
zero.

The idea was first tested using a benchtop apparatus called
the “virtual plume”, which is the combination of a simplified
model of chemical transport in flow and real chemical
sensors.137-139 A chemical marker was released into water
flow as a series of concentration pulses and was delivered
to the electrochemical amperometric sensors through tubes

γAB(f) )
|PAB(f)|2

PA(f)PB(f)

fs ) SU
d

(28)
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of different lengths. The sensors were shown to have
sufficiently fast responses, and the 1 Hz pulsation could be
detected in the coherence spectrum after the pulses were
delivered through a 1 mlong tube with a diameter of 0.5
mm. Later, the same coherence analysis was applied to the
data of concentration fields measured in real chemical plumes
using the laser-induced fluorescent technique. A small
amount of fluorescent dye, Rhodamine 6G, was released in
a water flow established in a 1.07 m wide, 24.4 m long tilting
flume with rectangular cross section and smooth bed. The
average velocity in the flume was 5.0 cm/s, and the flow
depth was 20.0 cm. Sweeping an argon-ion laser beam in a
plane parallel to the bed with a scanning mirror created the
illumination sheet. The laser light caused the dye to fluoresce,
and a digital CCD camera (8-bit grayscale, with 1018 vertical
and 1008 horizontal pixels) captured the emitted light. The
light intensity emitted by the dye is directly proportional to
the dye concentration and laser intensity. However, the
obtained raw images suffer from laser sheet nonuniformity,
lens vignette, and pixel variability.141 Therefore, an in situ
calibration was performed to convert the raw images into
quantitative data of concentration field. For the coherence
analysis, 6000 images were captured with 10 frames/s. The
field of view was 1 m× 1 m, and therefore, the spatial
resolution was roughly 1 mm. The laser sheet was in the
same horizontal plane as the plume source, 2.54 cm above
the floor.

The frequency modulation was performed by placing a
circular cylinder of 0.8 cm diameter at 2.54 cm downstream
of the chemical source. Figure 51 shows the snapshots of
unmodulated and modulated plumes. The periodic mean-
derings of the plume can be recognized for the modulated
plume near the source. Figure 52a shows the power spectral
density plot for the concentration on the centerline of the
modulated plume at 5 cm downstream from the source. A
small peak is recognized at 1.0 Hz, which roughly coincides
with the frequency of the Ka´rmán vortex generation. Figure
52b shows the coherence spectrum between the concentration
on the centerline and at 1 cm to the side at 5 cm downstream
from the source. Since the frequency modulation was
generated by the organized lateral meanderings of the plume,
it appears in the coherence spectrum as a correlated signal
component at two laterally separated locations. The peak at
the modulation frequency manifested itself clearly on the
zero background. The peak decayed rapidly when the point
of observation was moved downstream and disappeared at
∼10 cm from the source. Therefore, when a dominant single

peak is found in the coherence between sensors aligned
across the flow, it means that the chemical source generating
the Kármán vortex street is in close proximity. If the flow
velocity is known, the size of the object can be calculated
from the peak frequency. A robot with a visual sensor can
start looking around for an object of that specific size.
Although the frequency analysis provides us with useful
information, its drawback is the need for long data to calcu-
late accurate power spectra from random data. Moreover,
most of the currently available chemical sensors are too slow
to resolve the concentration fluctuations caused by the
Kármán vortices. Development of more sophisticated signal-
processing algorithms and high-speed chemical sensors is
required to implement this technique in real applications.

5. Conclusion
In this paper, we described the aspect of chemical sensing

in spatial and time domains and then reviewed the sensing
related to both domains. Although sensing technology for
chemical signals is not matured in comparison with that for
physical signals, that technology is gradually proceeding.

In the study of spatial domain, the gas distribution can be
measured using a homogeneous sensor array. Two types of
sensor arrays, such as sparse and packed sensor arrays, are
available. The sparse sensor array can show the global
behavior of the plume, whereas the packed one reveals the
local detailed behavior of the plume. The optical method is
also useful to obtain the plume image. An attempt to make
the plume generated in a virtual environment, where people
perceive sensory stimuli even if they do not stay in the actual
environment, is also introduced.

Next, a signal in time domain is described. Since the
temporal information sometimes includes useful information
for discriminating among the vapors, the technique to know
the sensor dynamics such as time constant is studied.
Frequency analysis is helpful when the useful information
is hidden in the temporal data changing irregularly due to
the turbulence.

Figure 51. Grayscale calibrated instantaneous images of (a)
unmodulated plume and (b) modulated plume. The size of the
original images before cropping was 1018× 1008 pixels for 1 m
× 1 m field of view.

Figure 52. (a) Power spectral density of the time record of
concentration at 5 cm downstream from the source in the modulated
plume. (b) Coherence spectrum at the same location. The time
record of concentration was taken from the same location as in (a)
and the location 1 cm to the side.
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Then, the sensing in both spatial and time domains is
described. The straightforward method to understand the
combination of both domains is to observe change in spatial
distribution with time. Another approach is to see the
correlation of signal features in time domain with several
locations. The frequency analysis of the signals also provides
us with useful information about an odor-source location.

It is an important task for us to fully understand the plume
behavior in both spatial and time domains and to establish
the measurement method of capturing its behavior. Moreover,
a sensor dynamics model is required because a sensor
response does not follow the speed of the plume change. A
systematic approach including algorithms will become more
important as well as the improvement of chemical-sensor
capability itself. The current technology is not sufficient to
find the toxic or explosive substance immediately. However,
the appropriate combination of sensors with signal-processing
techniques will make this a field in progress.
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